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Abstract
In this paper we investigate the Berry phase in GaAs semiconductor with
a quantized magnetic field in the rotating wave approximation. The
eigenfunctions of the nuclear spin in the quantized external field are obtained
and thus the Berry phase is evaluated explicitly in terms of the introduction
of the phase shift. It is shown that the Berry phase can be easily controlled
by the coupling strength, the anisotropy constant and the frequency of the
electromagnetic wave, which can be important in applications in geometric
quantum computing.

(Some figures in this article are in colour only in the electronic version)

GaAs semiconductor has been regarded as an important solid-state system for processing
quantum information and implementing quantum computing [1] since experiments have shown
that electron spins in GaAs semiconductor can preserve their coherence for distances of more
than 100 μm and for times up to 130 ns [2, 3], which is due to the weak interaction between
the nuclear spins and the environment. Furthermore, the coherent control of electron and
nuclear spins based on the hyperfine interaction between electrons and nuclei is experimentally
accessible by means of the optical nuclear magnetic resonance technique [4–6]. Such a
control of nuclear spins can also be achieved via electrical gates as investigated for GaAs
heterostructures in the quantum Hall regime [7]. It is also interesting that in the presence of
the nuclear quadrupole interaction, Grover’s algorithm has been implemented [8, 9]. It should
be noticed that above investigations are limited to the framework of the classical controlled
external field, namely, this external field itself has never been quantized. It is known in quantum
optics that a quantized field can lead to many novel quantum effects such as quantum jumps,
collapses and revivals of the Rabi oscillations. Moreover, if the quantum system interacts with
the vacuum, spontaneous emission and Lamb shift can also be observed in experiment. Latterly,
a novel Berry phase, which has no zero value in the vacuum state, can also be induced if the
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quantized field is controlled adiabatically and periodically [10, 11]. However, this investigation
so far has been restricted to the spin-1/2 Jaynes–Cummings model. Here we extend this method
to GaAs semiconductor for the spin-3/2 case. In contrast to the previous result, the Berry
phase obtained by the present paper can be controlled by the matter–field coupling strength, the
anisotropy constant and the frequency of the electromagnetic wave, which may be important
for use in geometric quantum computing [12–17].

The Berry phase [18], which is an important topic in modern physics, describes a
novel phase factor of the wavefunctions depending only on the geometry of the path when
a time-dependent quantum system undergoes an adiabatic and cyclic evolution. With the
exception of the discussions of the relaxation of its restriction conditions [19–22] the Berry
phase has been extensively generalized in various directions, such as Berry phases for mixed
states [23], for open systems [24], for composite systems [25] and for general quantum
states [26], etc. Recently, the Berry phase has been regarded as an essential way to implement
operation of a universal quantum logic gate in quantum computing [12–17] and as an
important tool for detecting quantum phase transitions [27–30]. In condensed matter physics
a series of phenomena have been understood as a manifestation of topological or geometric
phases [31–36].

In the rotating wave approximation the Hamiltonian of nuclear spin in the GaAs
semiconductor with a quantized magnetic field can be given by [37]

H = A(3S2
z − S2) − ωSz + ω0a†a − λ(aS+ + a†S−), (1)

where λ measures the coupling strength of the nuclear spin and the quantum field, the frequency
ω describes the nuclear level splitting, a† and a are the photon creation and annihilation
operators with the frequency ω0, and A is the anisotropy constant differing significantly among
the various nuclei. The all-optical nuclear magnetic resonance method yields the following
anisotropy constant for Ga and As nuclei in GaAs semiconductors: A = 7 × 10−7 K for 69Ga,
A = 3×10−7 K for 71Ga and A = 2×10−6 K for 75Ga [5, 6]. S denotes the total spin operator.
For GaAs semiconductor the experimentally feasible spin quantum number is S = 3/2 [7]. The
spin operators Sz , S+ and S− satisfy SU (2) commutation relations defined as

[Sz, S±] = ±S±, [S+, S−] = 2Sz, (2)

where S± = (Sx ± iSy). In the computation vectors of the Hilbert space such that
{| 3

2 , n〉, | 1
2 , n + 1〉, |− 1

2 , n + 2〉, |− 3
2 , n + 3〉}, the matrix of Hamiltonian (1) is given by

H =

⎛
⎜⎜⎝

3A − 3ω

2 + nω0 −λ
√

3(n + 1) 0 0

−λ
√

3(n + 1) −3A − ω

2 + (n + 1)ω0 −2λ
√

(n + 2) 0

0 −2λ
√

(n + 2) −3A + ω

2 + (n + 2)ω0 −λ
√

3(n + 3)

0 0 −λ
√

3(n + 3) 3A + 3ω

2 + (n+3)ω0

⎞
⎟⎟⎠ .

(3)

The instantaneous eigenvalues E j ( j = 1, 2, 3, 4) of Hamiltonian (3) can be found analytically;
however, it is pointless to display the tedious formula in the present paper. The ground-state
energy as a function of the coupling strength λ and the anisotropy constant A in the resonance
case with ω = ω0 is shown in figure 1(a), from which we can see that both the coupling
strength λ and the anisotropy constant A can control the ground-state energy as well as the
Berry phase as will be shown. Figure 1(b) shows the ground-state energy as a function of the
coupling strength λ and the frequency ω0, which can be easily changed by adjusting the external
quantized field. The ground-state energy as a function of the anisotropy constant A and the
frequency ω0 is plotted in figure 1(c). The eigenstates |ψ j 〉 corresponding to the eigenvalues
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Figure 1. (a) The ground-state energy E1 versus the coupling strength λ and the anisotropy constant
A with ω0 = ω = 1. (b) E1 versus the coupling strength λ and the frequency ω0 with A = 0.3 and
ω = 1. (c) E1 versus the anisotropy constant A and the frequency ω0 with λ = 1 and ω = 1.

E j are given by

∣∣ψ j
〉 = 1

N j

(
a j

∣∣∣∣
3

2
, n

〉
+ b j

∣∣∣∣
1

2
, n + 1

〉
+ c j

∣∣∣∣−
1

2
, n + 2

〉
+ d j

∣∣∣∣−
3

2
, n + 3

〉)
, (4)
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where

a j = λ
√

3(n + 1), (5)

b j = 3A − 3ω

2
+ nω0 − E j , (6)

c j = [−3A − ω
2 + (n + 1)ω0 − E j ][3A − 3ω

2 + nω0 − E j ] − 3λ2(n + 1)

2λ
√

(n + 2)
, (7)

d j = λ
√

3(n + 3)

3A + 3ω
2 + (n + 3)ω0 − E j

c j , (8)

N j =
√∣∣a j

∣∣2 + ∣∣b j

∣∣2 + ∣∣c j

∣∣2 + ∣∣d j

∣∣2
. (9)

It is known that in the standard semiclassical framework the field operators a and a† are
replaced by the classical amplitude with rotation factors e−iϕ(t) and eiϕ(t) with ϕ(t) = ω0t .
Therefore, the semiclassical Hamiltonian corresponding to Hamiltonian (1) can be written as
H = A(3S2

z −S2)−�Sz −λ(αS+e−iϕ(t)+αeiϕ(t)S−), where � is the detuning parameter and α

is the amplitude of the oscillating field. It can be seen easily that this semiclassical Hamiltonian
can be expressed in terms of an effective vector field B = (2λα cos ϕ, 2λα sin ϕ,�) as
H = A(3S2

z − S2) − B · S. When ϕ(t) = ω0t is changed adiabatically and periodically in
the parameter space of the effective vector field B, the semiclassical Berry phase can also be
obtained [38]. However, if the controlled external field is quantized, this effective vector field
becomes part of the system itself and therefore cannot be taken into account any longer as an
external variable. But the corresponding state can also be manipulated in the parameter space
of the coupling strength λ for Hamiltonian (1). Following the spirit of [10, 11], this Berry phase
can be evaluated by introducing the following phase shift:

R(t) = exp[−iϕ(t)a†a], (10)

where ϕ(t) = ω0t should be changed adiabatically and periodically.
This phase shift R(t) can lead to the time-dependent transformation |� j (t)〉 = R(t)|ψ j 〉

or |ψ j 〉 = R†(t)|� j (t)〉, where |ψ j 〉 is the eigenvector of the time-independent eigenequation
H |ψ j 〉 = E j |ψ j 〉 and |� j (t)〉 is the eigenvector of the time-dependent eigenequation
i d|� j (t)〉/dt = H ′(t)|� j (t)〉 with H ′(t) = R(t)H R†(t) − iR(t) dR†(t)/dt . For the time-
dependent eigenequation i d|� j (t)〉/dt = H ′(t)|� j (t)〉 the Berry phase can be calculated in

terms of standard definition using γ j = i
∫ T

0 〈� j (t)| d
dt |� j (t)〉 dt = i

∫ 2π

0 〈� j (ϕ)| d
dϕ

|� j (ϕ)〉 dϕ.

By using the transformations |� j (t)〉 = R(t)|ψ j 〉 and 〈� j (t)| = 〈ψ j |R†(t), the final Berry
phase corresponding to Hamiltonian (1) can be given as

γ j = i
∫ 2π

0

〈
ψ j

∣∣ R†(ϕ)
d

dϕ
R(ϕ)

∣∣ψ j
〉

dϕ. (11)

For the spin-1/2 Jaynes–Cummings model whose Hamiltonian reads H JC = ω0a†a +ωσz/2+
λ(σ+a + σ−a†), the Berry phase can be evaluated as γ+ = π(1 − cos θn) + 2πn and
γ− = −π(1 − cos θn) + 2π(n + 1) with cos θn = (ω − ω0)/

√
(ω − ω0)2 + 4λ2(n + 1),

which can be mapped into the semiclassical results in the coherent state representation with
large amplitude [10]. However, for Hamiltonian (1) the Berry phase can be derived from
equations (4)–(11) as the following:

γ j = 2π

N 2
j

[n|a j |2 + (n + 1)|b j |2 + (n + 2)|c j |2 + (n + 3)|d j |2]. (12)

This is very interesting for discussions on the ground-state Berry phase (n = 0). A novel
observation of this paper is that the ground-state Berry phase can be controlled by both the
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Figure 2. (a) The ground-state Berry phase γ1 versus the coupling strength λ and the anisotropy
constant A with ω0 = ω = 1. (b) γ1 versus the coupling strength λ and the frequency ω0 with
A = 0.3 and ω = 1. (c) γ1 versus the anisotropy constant A and the frequency ω0 with λ = 1 and
ω = 1.

coupling strength λ and the anisotropy constant A shown in figure 2(a), with the resonance
case. The behaviour of the ground-state Berry phase is similar to that of the ground-state von
Neumann entropy as a measure of the entanglement between the nuclear spin and photon [37].
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However, the maximum value of the ground-state von Neumann entropy S is given by Smax = 2
whereas the maximum value of the ground-state Berry phase can reach (γ1)max = 4.6. In fact,
the ground-state Berry phase can also be easily controlled by adjusting the coupling strength λ

and the frequency ω0 of the external quantized field shown in figure 2(b). Figure 2(c) shows
the ground-state Berry phase as a function of the anisotropy constant A and the frequency ω0.

In conclusion, the Berry phase in GaAs semiconductor with a quantized field has been
obtained analytically. A novel feature of the Berry phase can be controlled by the coupling
strength λ, the anisotropy constant A and the frequency ω0 of the electromagnetic wave, which
has important application in geometric quantum computing.
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